Posts

Adrian Hill elected to Royal Society

Professor Adrian Hill, Director of the Jenner Institute (Nuffield Department of Medicine), has become a Fellow of the Royal Society for his leading role in the design and development of new vaccines for globally important infectious diseases over the course of over 25 years.

One of his most important developments has been the spin out of Vaccitech, which he co-founded in 2016, to capitalise on the discovery of ChAdOx. The chimp cold virus, ChAdOx, became a weapon of choice against what the World Health Organization called “Disease X” – a hypothetical future pathogen with epidemic or pandemic potential.

ChAdOx is a viral vector which safely mimics viral infection in human cells and elicit antibody and T cell responses to pathogens and tumours. Thus far, ChAdOx has already been applied in cancers (prostate), malaria, and most recently, the AstraZeneca-Oxford vaccine for Sars-Cov-2.

Through his work, Professor Hill has demonstrated the applications of adenoviruses in immunisation regimes supporting new vaccination approaches for a variety of disease, many of which have previously not had treatment options available.

Professor Hill becomes one of 6 new Oxford researchers to join the Royal Society. Read about them here.

Using Herpesvirus to fight cancer

The Seymour lab at the Department of Oncology, University of Oxford, has published a new paper investigating the use of oncolytic herpes virus-1 as a vector to augment immunotherapy in cancer

Prof Andi Roy receives new award for immune-cell research

Co-funded by Cancer Research UK and Children with Cancer UK, Andi is one of 5 to receive £1 million each to investigate children’s and young people’s cancers.

New Oxford spin-out Singula Bio launches

Singula Bio is a bold new seed-stage biotechnology company spun out of Oxford University. It aims to become a world leader in developing neoantigen-based individualised cell therapies to use against difficult-to-treat solid malignancies such as ovarian cancer.

This patient-centred approach will pioneer immunological, medical, surgical and computational technologies to generate selective therapies that eliminate cancer, and the ultimate hope is to achieve long-term, high-quality disease-free survival for cancer patients.

Singula Bio was co-founded by Professors Ahmed Ahmed, Enzo Cerundolo and Enda McVeigh from the Nuffield Department of Women’s & Reproductive Health at Oxford University. It is supported by Oxford University Innovation (OUI), the University’s research commercialisation company, and it has secured generous seed-stage investment from IIU Nominees Limited to pursue its goals. Singula Bio is a landmark for OUI as it is the 250th OUI-supported venture to have passed through the office since it opened its doors in 1987.

Motivated by their many patients (and laboratory funding from charities Ovarian Cancer Action and Cancer Research UK) Profs Ahmed and Cerundolo were inspired to improve an individual’s gruelling experience of cancer and to lessen their suffering of other treatments. Together, they have an enormous knowledge in cancer medicine, cancer immunology, cell and molecular biology, and computational biology which has enabled them to design patient-specific cancer cell therapies that harness the power of the patient’s own immune system to fight cancer.

In a tumour, cancer cells carry mutations that appear foreign to a patient’s body and, therefore, their immune system reacts to these mutations. One strong form of an immune reaction is through generating mutation-specific cells called “T cells”.

Prof Ahmed, Professor of Gynaecological Oncology at the Nuffield Department of Women’s & Reproductive Health, Oxford University, said:

“A key feature of cancer cells is the preponderance of genetic aberrations in their DNA. These aberrations can make proteins appear foreign to our body’s immune system which then develops immune cells (T cells) to fight cancer cells. Thanks to years of research and technology development we now know how to identify relevant tumour-specific T cells to grow them outside the body and deliver them back to patients to fight cancer cells.”

Oxford spin out financed $6.8m for research into oncolytic therapies

Oxford spin out company, Theolytics, has raised $6.8 million in financing from Epidarex Capital and Taiho Ventures, to advance their work into viral derived cancer therapies. The closing of the recent Series A round resulted in participation from existing investor, Oxford Sciences Innovation (OSI) and new involvement from Epidarex Capital and Taiho Ventures LLC.

Theolytics is a biotechnology company founded from the University of Oxford, that harnesses the power of virus research to combat cancer. Originally launched in 2019, the company specialises in oncolytic viral therapy, developing a library of viral variants that can be used to produce new oncolytic viruses that selectively kill certain cancer cells. The in-house library at Theolytics hosts thousands of viral variants upon which researchers can draw candidates for new therapies, akin to phage display libraries used for antibody development.

The company was spun out of Len Seymour’s lab at the University of Oxford with the idea of applying external pressures to viruses to force the emergence of a variant with a set of desired characteristics, such as attacking specific cancers. Their most recent project will focus on ovarian cancer and ‘arming’ viruses with therapeutic agents for a localised, potent expression at the tumour site.

Len Seymour, Co-Founder and Professor of Gene Therapies within the Department of Oncology at the University of Oxford, says:

Bio selection represents a clever strategy to develop therapeutics that exploit scientific mechanisms that are not yet fully understood. By applying the correct selection pressure it is possible to identify oncolytic viruses that could not be designed on the basis of existing knowledge. The most exciting aspects of Theolytics approach are the huge diversity of the viral libraries they have produced using sophisticated molecular shuffling, thereby harnessing the therapeutic power of many diverse adenovirus serotypes, and the clinically relevant model systems they have developed. By combining these two strategic innovations, the Theolytics scientists have developed some truly exciting and world class therapeutic candidates.

In the long run, the company are working to transform the way in which viral therapies for cancer are discovered and developed. Read more about the technology here.

Being a part of cancer drug discoveries

Last month, the biotech company Immunocore announced results from its phase 3 clinical trial investigating the efficacy of Tebentafusp (a new anti-tumour immunotherapy), in the treatment of patients with metastatic melanoma. If it is given regulatory approval, it is likely that the drug will enter wider clinical use next year. If it does, it will give those living with uveal melanoma (UM), a rare cancer, a new treatment option and would be the first new therapy to improve the overall survival of this group of patients in over 40 years. Susan was one of the first patients to receive the drug when it was in its early stages of development.

Susan’s Clinical Trial Experience

In 2008, what appeared to be a small spot on the top of my head turned out to be melanoma. After surgery at the John Radcliffe Hospital in Oxford to remove the tumour there was no sign of recurrence, until 2012 when the melanoma had apparently spread to my lungs. It was at then that I was invited to enrol on a clinical study at Oxford’s Early Phase Clinical Trials Unit (EPCTU).

I met Professor Middleton, head of the trials unit, in 2012 following the appearance of cancer metastases in my lungs when he informed me of a new clinical trial he was leading,  investigating a drug called IMCgp100, now known as Tebentafusp. At the time, there was no way to know if the drug would help in any way. Early-stage clinical trials for a new drug are not tried and tested, the side effects are not always clear and the outcomes not always sure.

For me, in the first 30 days of the trial I experienced rashes, headaches and lethargy. Common for many undergoing cancer treatments, but unpleasant none-the-less. Throughout the whole time I was on the trial the doctors and nurses were completely honest with me.  There were no promises.  They were on a learning curve themselves and if they didn’t know the answer to a question, they said so.

However, gradually these side effects subsided, and it became clear on my scans that the tumour had begun to shrink. Later on, it had stopped shrinking, but had not grown either. After 14 drug cycles on the trial, I attended my last scan. The tumour in my lung had shrunk to an operable size, and after another operation in 2015, the cancer was removed.

I cannot tell you how wonderful it felt when I was told that there was no sign of any tumour in the left lung and that the right one was continuing its downward trend. All of this was because of an experimental drug in an ever-evolving trial that I was part of.

At the time it didn’t occur to me that my experience was laying the ground work for the introduction of a new drug into common use.

From being told I had 18 months left to live in 2012, to being cancer free in 2015, I think my case exemplifies why clinical trials are important. It was fortunate that I qualified to be part of a first stage clinical trial in Oxford, and one that went on to help me. But even more, it is fantastic to hear that the same drug I was treated with has now gone on to complete a phase 3 trial, and have the potential to give people like me a new lease on life.

Whist clinical trial drugs are experimental until rigorously tested, the knowledge and resources of the staff at the University of Oxford is what contributed to the early identification of Tebentafusp as a potential therapy, so that it may go on to be translated into the clinic to help me and other melanoma patients.

Sometimes in life, something is so important that you have to make a decision without any knowledge of where it will lead you.

I made that decision and underwent a clinical trial that was administered under rigorously strict guidelines, with the patient’s safety as paramount

I don’t know whether the cancer will return, as I believe melanoma is a tricky devil, but I feel as if I have been given a second chance and my remission wouldn’t have been possible without the researchers and staff at Oxford involved in the development of new drugs.

About the clinical trial

Tebentafusp was tested in a phase 1 and 2 clinical trial by researchers at the University of Oxford and Immunocore, hosted at the EPCTU. The success of those trials has allowed the drug to be tested in stage 3 trials which were recently reported on by Immunocore.

The detailed results of the phase 3 trial will be submitted for publication in a peer-reviewed journal later next year. All the information about the drug will be submitted to the regulator, the MHRA, for their assessment after which it is hoped that the drug will enter the clinic.

The phase 1 and 2 trials were led by Prof Mark Middleton at the Department of Oncology.

 

New melanoma drug a step closer to the clinic

Previous phase 1 and 2 clinical trials have been conducted into Tebentafusp, a new anti-tumour immune response drug for patients with metastatic melanoma. The results from Immunocore and the University of Oxford, found that this first-of-its-kind treatment showed great promise in helping the immune system fight off melanoma cancers of both the eye and skin. The phase 3 clinical trial for this drug is the first for an affinity optimised T-cell receptor drug, making it the first of its kind.

Today, Immunocore the company behind the drug have announced trial results showing tebentafusp works better for patients with untreated metastatic uveal melanoma, when compared to other treatment choices.

“A positive survival benefit for tebentafusp represents a major step towards bringing a potential new treatment for cancer patients with a high unmet need. If approved, it would be the first new therapy to improve the overall survival in 40 years and to be specifically used in the treatment of metastatic uveal melanoma, a disease with poor survival where new therapies are urgently needed”

– Bahija Jallal, CEO of Immunocore

Tebentafusp comes out of clinical trials led by Prof Mark Middleton (Department of Oncology). Now, we see the potential for this drug coming into the clinic, subject to regulatory approval, as early as next year.

“It is very exciting that our observations in the first trial of tebentafusp, that it could make some uveal melanomas shrink, have now been borne out in larger studies. There’s still a way to go but there is every hope that this will prove an option for the treatment of this difficult cancer quite soon.”

– Prof Mark Middleton, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre.

Uveal melanoma is a rare and aggressive form of cancer that affects the eye, and typically has a poor prognosis and has no accepted optimal treatment and management. After the cancer metastases, 50% of patients have life expectancy of less than a year. Tebentafusp has the potential to be the first new therapy to improve the life expectancy of patients in over 40 years.

About the researchers

This research was funded by Immunocore.

Prof Mark Middleton is the Head of the Department of Oncology at the University of Oxford. He has overseen the development of internationally leading melanoma and upper GI clinical research groups and establishment of portfolios of early phase radiotherapy and haemato-oncology trials in Oxford. He is involved in the evaluation of novel immunotherapeutics, including pre-clinical development, trial design, proof of mechanism and proof of concept.

Immunocore, is a pioneering, clinical-stage T cell receptor biotechnology company working to develop and commercialise a new generation of transformative medicines to address unmet needs in cancer, infection and autoimmune diseases.  The Company’s most advanced programs are in oncology and it has a rich pipeline of programs in infectious and autoimmune diseases. Immunocore’s lead program, tebentafusp (IMCgp100), has entered pivotal clinical studies as a treatment for patients with metastatic uveal melanoma. Collaboration partners across the Immunocore pipeline include Genentech, GlaxoSmithKline, AstraZeneca, Eli Lilly and Company, and the Bill and Melinda Gates Foundation. Immunocore is headquartered at Milton Park, Oxfordshire, UK, with offices in Conshohocken, Pennsylvania and Rockville, Maryland in the US. For more information, please visit www.immunocore.com.

The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) is based at the Oxford University Hospitals NHS Foundation Trust and run in partnership with the University of Oxford.

The NIHR is the nation’s largest funder of health and care research. The NIHR:

  • Funds, supports and delivers high quality research that benefits the NHS, public health and social care
  • Engages and involves patients, carers and the public in order to improve the reach, quality and impact of research
  • Attracts, trains and supports the best researchers to tackle the complex health and care challenges of the future
  • Invests in world-class infrastructure and a skilled delivery workforce to translate discoveries into improved treatments and services
  • Partners with other public funders, charities and industry to maximise the value of research to patients and the economy

The NIHR was established in 2006 to improve the health and wealth of the nation through research, and is funded by the Department of Health and Social Care. In addition to its national role, the NIHR supports applied health research for the direct and primary benefit of people in low- and middle-income countries, using UK aid from the UK government.

This work uses data provided by patients and collected by the NHS as part of their care and support and would not have been possible without access to this data. The NIHR recognises and values the role of patient data, securely accessed and stored, both in underpinning and leading to improvements in research and care. www.nihr.ac.uk/patientdata

 

What we can learn from cancer survivors

Understanding how an individual survives cancer, and why they respond well to therapy, can be vital in identifying new therapeutic targets. A new project seeks to see why some advanced pancreatic cancer patients overcome the odds and respond positively to treatment.

Oxford Cancer alumni’s biotech success

Scenic Biotech was founded in March 2017 as a spin-out of the University of Oxford and the Netherlands Cancer Institute. The company is based on the Cell-seq technology developed by co-founders Sebastian Nijman and Thijn Brummelkamp in their academic labs.

Cell-seq is a large-scale genetic screening platform that allows the identification of genetic modifiers – or disease suppressors – that act to decrease the severity of a disease. These disease-specific genetic modifiers are difficult to identify by more traditional population genetics approaches, especially in the case of rare genetic diseases. By mapping all the genetic modifiers that can influence the severity of a particular disease, Cell-seq unveils a new class of potential drug targets that can be taken forward for drug development.

In a deal worth $375m, Scenic Biotech has recently entered into a strategic collaboration with Genentech, a member of the Roche Group. This will enable discovery, development and commercialisation of novel therapeutics that target genetic modifiers.

Innovative drug delivery techniques show promise in clinical trials

Pancreatic cancer has a limited response to chemotherapy treatment, due to the movement of anti-cancer drugs from the blood into tumour cells being limited by cellular mechanisms such as poor perfusion, high stromal content and raised interstitial pressure. One way to overcome these challenges and increase the toxic effect of chemotherapy treatment on a tumour would be to increase drug dosage. However, this would result in the damage of healthy non-tumour cells, and would likely result in unacceptable toxicity to patients.

The aim of Professor Constantin Coussios and his team in the Institute Biomedical Engineering is to develop of drug delivery system capable of enhancing drug penetration into and around a tumour, whilst minimising toxicity to the patient. The team has so far found a successful approach, by increasing drug uptake into tumours through warming of the body, which causes vasodilation.

By using focused ultrasound (FUS) to generate heat, only defined areas (approximately the size of a grain of rice) are targeted for treatment. In combination, chemotherapy drugs such as doxorubicin can be encapsulated in a heat-sensitive lipids (ThermoDox®), so that the active drug is only released when a specific temperature is reached at a specified location, as defined by the position of the FUS beam.

Research fellows Dr Michael Gray (Dept of Engineering) and Dr Laura Spiers (Dept of Oncology) have been working with the Department of Pathology in the Oxford University Hospitals NHS Foundation Trust, to help characterise the efficacy of this approach, by assessing thermal and acoustic ultrasound properties of the ex vivo pancreas.

This new knowledge will be directly applied to patients in the new early phase clinical trial, PanDox (targeting pancreatic cancers with focused ultrasound and doxorubicin chemotherapy). This builds on the successful TarDox trial, which already demonstrated FUS-induced heating resulted in improved delivery of the ThermoDox® encapsulated chemotherapy drugs to liver metastases from various primary cancers.

The effect in the TarDox trial was such that a positive response to therapy from the tumour was seen after only a single treatment cycle in 4 out of 7 patients, even in cancers as colorectal adenocarcinoma (which is not known to respond to conventionally administered doxorubicin). These results suggest that if the cytotoxic threshold needed to successfully treat a tumour can be reached, then a positive response may be achieved without unacceptable toxic consequences on the patient.

The upcoming PanDox trial translates this approach to patients with non-resectable pancreatic adenocarcinomas. It will combine focused ultrasound to generate heat with ThermoDox® delivered into the blood.

The main aim of PanDox is to determine whether this novel approach to treating pancreatic cancer can enhance the amount of drug delivered to tumours that cannot be surgically removed. Secondary aims will assess tumour response and procedural safety. The first patients will be recruited from early 2021.

About the PanDox Team

Prof Constantin Coussios, PanDox Priniciple Investigator, is the Director of the Institute of Biomedical Engineering. His area of interest is in the study of drug delivery systems and improvement of delivery into tumours.  He founded and heads the Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), a research group of 4 faculty and some 45 researchers working on a wide array of therapeutic applications. He is also serves as the Director of the Oxford Centre for Drug Delivery Devices.

Dr Laura Spiers is a doctor of Medical Oncology. She is currently undertaking a DPhil in Oncology with the Institute of Biomedical Engineering, investigating ultrasound-enhanced drug delivery.

Dr Michael Gray is a Senior Research Fellow, interested in the clinical therapeutic potential of ultrasound.