AI-powered tools tackling oesophageal cancer

Felix Zhou read Engineering at St John’s College, Cambridge graduating in 2013. He obtained his PhD at Oxford in machine learning and computer vision working on the analysis of biological motion in microscopy videos. He is currently a postdoctoral fellow in the Lu Lab at the Ludwig Cancer Institute. Felix is addressing two key clinical problems in Oesophageal Cancer (OeCa) using computational methods.

To improve the current poor outcomes experienced by patients with OeCa, research across Oxford is underway to allow earlier detection of  early stage disease, and to address the issue of poor response rates to standard treatments. Felix’s research seeks to:

• Felix is working closely with collaborators in the Big Data Institute and John Radcliffe Hospital, developing AI-powered augmented reality (AR) tools to assist clinicians in accurately detecting and mapping the location of oesophageal tumours in endoscopy. A significant output of this work is a comprehensive image restoration framework for endoscopy frames corrupted by imaging artefacts. To support scientific reproducibility Felix and his colleagues [1] compiled the first comprehensive image dataset, collected from 6 international institutions and [2] established the Endoscopy Artefact Detection Challenge.

• Felix and colleagues are developing personalised treatments to overcome heterogeneity-driven resistance, a common problem with current standard treatments such as chemotherapy. This involves high-throughput drug screens using miniature organs grown from patient biopsies (organoids), and applying timelapse imaging to monitor growth and interaction dynamics. Felix develops computational analyses to characterize the spatio-temporal development of individual organoids in these screens to more specifically assess a tumour’s sensitivity to existing and new drugs. This builds upon a comprehensive motion analysis framework that Felix recently developed called Motion Sensing Superpixels (MOSES) [3] which has already been shown to capture subtle interaction changes between similar epithelial cell lines.

In Oxford Felix collaborates with Sharib Ali, Jens Rittscher (BDI) and Barbara Braden, Adam Bailey and  James East (clinical endoscopists, John Radcliffe Hospital) on the development of computational endoscopy. He works with the lab of Hagan Bailey (Chemistry),  Jens Rittscher, Daniel Ebner (TDI) and Barbara Braden on developing organoid screens for personalised medicine. His work has been funded by the EPSRC and the Ludwig Cancer Institute. The projects Felix is working on have received funding from the EPSRC, the NIHR Oxford Biomedical Research Centre, and CRUK.

Extract: motion tracts of analysed single organoids

Find out more about our research below

Women

Using big data in breast cancer research

The Cancer Epidemiology Unit has been using the largest epidemiological data set of its kind to unlock the secrets of breast cancer, what can be done to prevent it, and which women are most likely to develop it

A new FRONTIER for breast cancer

Latest news from FRONTIER, the trial investigating the potential of the radiotracer Fluciclovine in the subtyping and staging of breast cancers

How chemotherapy impacts the body

A new study has investigated how chemotherapy impacts oesophageal cancer patients and if this determines a patient’s risk of post-operative complications

New AI technology to help research into cancer metastasis

DeepScratch is a new AI technology that can be used to analyse how cells move in response to wound, building on the latest advances in deep learning

First Huaxi SCU-Oxford Forum on Gastrointestinal Cancer

The first Centre Forum was held in China this week, from 27-28th September 2020

Using machine-learning approaches to identify blood cancer types

Oxford researchers have outlined the applications of AI in the classification of myeloproliferative neoplasm cancers in a new study

New digital classification method using AI developed for colorectal cancer

A new study from S:CORT demonstrates an easy, cheap way to determine colorectal cancer molecular subtype using AI deep-learning digital pathology technology

QResearch researchers collaborate on two major cancer projects

Researchers in the Primary Care Epidemiology Group are joining two landmark projects to combine healthcare data and artificial intelligence to improve cancer diagnosis

Oxford University and Sichuan University form joint Centre for Gastrointestinal Cancer

The University of Oxford-Sichuan University Huaxi Joint Centre for Gastrointestinal Cancer is a new international collaboration that seeks to develop an integrated gastrointestinal cancer plan through the exchanging of ideas and resources.

References

1 Ali, Sharib, et al. “A deep learning framework for quality assessment and restoration in video endoscopy.” arXiv preprint arXiv:1904.07073 (2019).

2 Ali, Sharib, et al. “Endoscopy artifact detection (EAD 2019) challenge dataset.” arXiv preprint arXiv:1905.03209 (2019).

3 Zhou, Felix Y., et al. “Motion sensing superpixels (MOSES) is a systematic computational framework to quantify and discover cellular motion phenotypes.” eLife 8 (2019): e40162.